M. Tech. Biotechnology

Department of Chemical Engineering
Andhra University
Scheme of Instruction & Examination
(For batches admitted from 2007 onwards)

I Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>P</th>
<th>Total Hours</th>
<th>Sessional</th>
<th>Exam</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBIO-101</td>
<td>Advanced Microbiology</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MBIO-102</td>
<td>Advanced Biochemistry</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MBIO-103</td>
<td>Biochemical Engineering</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MBIO-104</td>
<td>Advanced Downstream Processing</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MBIO-105</td>
<td>Elective-I (Any one)</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MBIO-106</td>
<td>Biotechnology Lab-I</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>50</td>
<td>50*</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MBIO-107</td>
<td>Seminar</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>100</td>
<td>-</td>
<td>100</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 20 12 32 300 400 700 26

* Note only internal valuation

II Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>P</th>
<th>Total Hours</th>
<th>Sessional</th>
<th>Exam</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBIO-201</td>
<td>Genetic Engineering</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MBIO-202</td>
<td>Enzyme Engineering</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MBIO-203</td>
<td>Environmental Biotechnology</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MBIO-204</td>
<td>Nanotechnology (Common with M.Tech. (CACE))</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MBIO-205</td>
<td>Elective-II (any one)</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MBIO-206</td>
<td>Biotechnology Lab-II</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>50</td>
<td>50*</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MBIO-207</td>
<td>Seminar</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>100</td>
<td>-</td>
<td>100</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 20 12 32 300 400 700 26

Elective-I (Any one): a) Bioanalytical Techniques b) Bioinformatics
c) Protein Engineering d) Biosafety & Bioethics

Elective-II (any one): a) Industrial Biotech Products b) Pharmaceutical Biotechnology
c) Agricultural Biotechnology d) Food Technology

III & IV Semesters – Project Work
MBIO-101: ADVANCED MICROBIOLOGY

Introduction to Microbiology: Origin and evolution of microorganisms, history of Microbiology, nature and scope of microbiology, major characteristics of prokaryotes and Eukaryotes, structure and functioning of bacterial cell, staining reactions.

Classification of microorganisms: Major characteristics of microorganisms, concepts of Classification, classification methods, principles of nomenclature and identification, Modern trends in classification. General features and classification of some groups of microorganisms - Algae, Fungi, Chlamydiae, Rickettsiae, Mycoplasmas, Viruses and Protozoa, economic importance of Micro-organisms.

Methods in microbiology: Nutritional requirements, nutritional types of bacteria, Characteristics of culture medium, type of culture media and preparation of culture media, isolation of microorganisms - general and selective methods, isolation of bacteria in pure culture, enrichment - enrichment methods, staining techniques, culture characteristics, maintenance and preservation of cultures, culture collections.

Reproduction and growth: Reproduction in bacteria, genetic transfer in bacteria, Bacterial growth, bacterial growth curve, growth measurement techniques, factors affecting growth, control of microorganisms by physical and chemical methods.

Metabolism and energy production: Respiratory chain, energy production by aerobic and anaerobic process, energy production by photosynthesis. Microbiology of air, water, soil, milk and food.

Epidemiology and infectious diseases: Epidemiological markers, role of host in infectious diseases - Air borne, water borne and food borne diseases.

Immunology: Natural resistance, internal defense mechanisms, non-specific defense mechanisms, immunity, types of immunity, immune systems, antibody and its diversity, Hypersensitivity, transplantation, autoimmunity, AIDS and other immune deficiencies, vaccines, types of vaccines, production of vaccines and synthetic vaccines, monoclonal anti bodies and their use, antibiotics, history of antibiotics, classification and production of antibiotics, microbial toxins, types of microbial toxins, effects of microbial toxins and their control.

Text books:
- Microbiology fundamentals and applications by S. S. Purohit. Agro botanical. Publications.

Reference books:
- General Microbiology by Roger Y. Stainer, Edward A. Adebery, John L. Ingraham. Published by Macmillan Press Ltd.
Scope and importance of biochemistry, molecular logic of living matter, origin of biomolecules. Molecular structure of water, macromolecular structure of water, hydrogen bonds, dissociation of water.

Carbohydrates: Classification of carbohydrates, structure and properties of monosaccharides (ribose, glucose, fructose), disaccharides (maltose, lactose, sucrose) and polysaccharides (Starch, glycogen and cellulose).

Amino acids and proteins: Classification and properties of amino acids and proteins, peptide bond, structural organization of proteins: primary, secondary, tertiary and quaternary structure of proteins. Biochemical function of proteins, denaturation of proteins.

Lipids: classification, structure and physiological functions of triglycerides, fatty acids, phospholipids, cerebrosides, gangliosides and cholesterol.

Nucleic Acids: Structure and properties of purines and pyrimidine bases, nucleosides, nucleotides. Structure of nucleic acids- DNA and RNA.

Enzymes: Classification of Enzymes, Mechanism of Enzyme action, factors affecting enzyme action, co-enzymes and regulatory enzymes. Enzyme inhibition- competitive, non-competitive and uncompetitive inhibitions.

Structure and functions of vitamins. Membrane assembly and transport across the membranes. Bioenergetic principles and ATP cycle.

Mechanism of photosynthesis, Embden-Meyerhof pathway of glucose metabolism (Glycolysis), Citric acid cycle (Krebs cycle), Electron transport and Oxidative phosphorylation.

Biosynthesis of fatty acids - palmitic acid biosynthesis, β-oxidation of fatty acids.

Biosynthesis of DNA (Replication).

Biosynthesis of RNA (Transcription).

Biosynthesis of Proteins (Translation).

Text books:

- Fundamentals of Biochemistry-J. L. Jain, S. Chand and company Ltd. New Delhi.
MBIO-103: ADVANCED BIOCHEMICAL ENGINEERING

Enzyme Kinetics: effects on enzyme activity, deactivation, immobilized enzymes.

Microbial growth kinetics: Batch growth, unstructured models, growth in continuous culture, structured models, product formation kinetics, cell immobilization.

Transport Phenomena: Gas-liquid Mass transfer; Theoretical models for K_{La}, interfacial area and bubble oxygen transfer, gas-liquid mass transfer of components other than oxygen.

Mass transfer into solid particles: External transfer, intraparticle diffusion.

Heat transfer correlations.

Bioreactors: Review of various types of bioreactors used in the fermentation industry.

Multiphase bioreactors: packed bed, bubble-column, fluidized bed and trickle bed reactors.

Alternate fermenters: new bioreactor configurations used in the fermentation technology.

Animal and plant cell reactor technology.

Sterilization: Sterilization methods, thermal death kinetics, design criterion, batch and continuous sterilization, air sterilization.

Text books:

Reference books:
- Blanch, H. W., and D. S. Clark, Biochemical Engineering, Marcel Dekker, New York, 1996.
MBIO-104: ADVANCED DOWN STREAM PROCESSING

Unit I: Introduction - An Overview of Bioseparations: Bioprocesses, Range and characteristics of bioproducts, Need for down stream processing, Characteristics of Fermentation broths, An overview of bioseparations; A few case studies.

Cell Disruption: Intracellular products, Cell wall, Cell disruption, Proteins of inclusion bodies.

Reverse Phase and Hydrophobic Interaction Chromatography: hydrophobic interaction chromatography; Reverse phase chromatography. Basic theory of retention in RPC and HIC; Hydrophobic Interaction Chromatography. Electro kinetic Methods of Separation: the various Method; Electrophoresis; Capillary Electrophoresis; Isoelectric Focusing; Isotachophoresis.

Unit II: Liquid-liquid extraction with ternary systems-Instructional objectives: industrial example; Equipment: mixer- settlers, spray columns, packed columns, plate columns, columns with mechanically agitated agitation; General design considerations; Hunter- Nash graphical equilibrium- stage method: number of equilibrium stages, minimum and maximum solvent- to- feed flow rate- ratios, use of right- triangle diagrams, use of an auxiliary distribution curve with McCabe- Thiele diagram, extract and raffinate reflux; Maloney- Schubert graphical equilibrium- stage method; Theory and scale-up of extractor performance: mixer- settler units, multi-compartment columns, axial dispersion.

Unit III: Membrane separations: Instructional objectives: industrial example; Membrane materials; Membrane modules; Transport in membranes: porous membranes, bulk flow, liquid diffusion in pores, gas diffusion, nonporous membranes, solution- diffusion for liquid mixtures, solution- diffusion for gas mixtures, module flow patterns, cascades, external mass transfer resistances, concentration polarization and fouling; Dialysis and electro dialysis; Reverse osmosis; Gas permeation; Pervaporation; Ultra filtration: process configurations; Micro filtration: constant- flux operation, constant- pressure operation, combined operation. Introduction to liquid membranes, principle, its advantages and its applications.

Unit IV: Crystallization: Instructional objectives: industrial example; Crystal geometry: crystal- size distributions, differential screen analysis, cumulative screen analysis, surface mean diameter, mass- mean diameter, arithmetic- mean diameter, volume- mean diameter; Thermodynamic considerations: solubility and material balances, enthalpy balances; Kinetic and transport considerations: super saturation, nucleation, crystal growth; Equipment for solution crystallization: circulating, batch crystallizers, continuous, cooling crystallizers, continuous, vacuum, evaporating crystallizers; The MSMPR crystallization model: crystal population balance; Precipitation.

Unit V: Drying of solids: Instructional objectives: industrial example; Drying equipment: batch operation, continuous operation; Psychrometry: wet- bulb temperature, adiabatic-saturation temperature, moisture- evaporation temperature; Equilibrium- moisture content of solids; Drying periods: constant-rate drying period, falling- rate period; Dryer models: materials and energy balances for direct- heat dryers, belt dryer with through- circulation, direct- heat
rotary dryer, fluidized- bed dryer.

Text books:

- “Bioseparations: Principles and Techniques” by B.Sivasankar, Prentice-Hall India. (Unit I)
- “Separation Process Principles”, Seader, J.D. and Henley, EJ, 2 Ed.Wiley India. (Unit II-V)
MBIO-105: ELECTIVE – I
MBIO-105A: BIO-ANALYTICAL TECHNIQUES

Unit I: Chromatographic Techniques - Affinity - Adsorption - paper - Thin layer - Column - Ion Exchange - Gel Chromatography - Applications.

Unit II: Gas liquid chromatography - High Pressure liquid chromatography - Equipment - Applications.

Unit V: Short notes from units I to IV

Text books:

- "Instrumental methods of Chemical Analysis - Sharma, B. K. Goel Publishing House, Meerut.
- "Instrumental Methods Analysis” - Willard, Merritt, Dean & Settle, CBS Publishers & Distributors, Delhi.
MBIO-105B: Bioinformatics

Introduction: Molecular Biology and Bioinformatics, Biological database: Primary, Secondary and Structural data bases, tools for web search, data retrieval tools.

Genome analysis and gene mapping: sequence assembly problem, genetic mapping and linkage analysis, genome sequencing, sequence assembly tools, Human genome project.

Sequence Alignment: Alignment of pairs of sequences, scoring matrices, multiple sequences, phylogenetic analysis, Tree evaluation, automated tools for phylogenetic analysis, working with FASTA and BLAST.

Gene identification and prediction: Basis for gene prediction, pattern recognition, gene prediction methods, working with DNA, Micro arrays, Micro array analysis.

Protein structure prediction: Analysis and prediction of primary structure and secondary structure, motifs, profiles, patterns and fingerprints search, Ab Initio approach, 2-D structure prediction, protein function prediction from DNA sequence.

Computational Methods for Pathways and Systems Biology: Analysis of pathways, metabolic network properties, metabolic control analysis, simulation of cellular activities.

Text books:

Reference books:
MBIO-201: GENETIC ENGINEERING

- Introduction to Gene manipulation. (b) Enzymology of gene cloning, modification methylases, restriction endonucleases.
- Reverse transcriptase and DNA cloning in E. Coli. (b) Plasmids, cosmid and bacteriophages as cloning vectors.
- Cloning strategies and gene libraries. (b) Recombinant selection and screening.
- Expression of cloned genes cloning in bacteria other than E. Coli, in yeasts, in plant cells and in mammalian cells in culture. (b) Micro injection genes into oocytes, eggs and embryo.
- The genetic code and regulation of gene expression. (b) Application of genetic Engineering in the fields of biology, medicine and industries.

Text books:
- Introductory Biotechnology by R. P. Singh.
- Principles of genetic Engineering by Old and Primrose.
• Enzymes from plant & animal sources & b) Enzymes from microbial sources.
• Techniques of enzyme extraction from plant, animal and microbial sources & b) Techniques of enzyme purification.
• Characterization of enzymes & b) Effect of chelating agents and molecular weight determination.
• Techniques used for immobilization of enzymes & b) Techniques used for immobilization of whole cells.
• Production of industrially important enzymes & b) Application of enzymes in Chemical and Pharmaceutical industries.

Text book:

Reference book:
MBIO-203: ENVIRONMENTAL BIOTECHNOLOGY

Environment: Types of Environment, Environment and Development, Environmental management, environmental education, principles of ecology, ecosystems, types of ecosystems, ecosystem structure and functioning, food chains, food webs, Ecological pyramids, nutrient cycling, microbial associations.

Source, effects and control aspects of various pollutants: Air (Particulate matter, SOx, NOx, COx, CHx, noise), water (primary, secondary and advanced treatment techniques), solids (recycling, incineration and bioconversion) Global environmental problems: global warming, ozone depletion and acid rain. Industrial effluent treatment: case studies of paper and pulp, tannery, pharmaceutical, fertilizer and petroleum industries.

Biodegradation of xenobiotics: Xenobiotic compounds in the environment, persistent compounds, degradation mechanisms.

Bioremediation: Bioremediation by microorganisms, bioremediation process and technologies, measuring bioremediation in the field, monitoring and efficacy of bioremediation.

Biosorption of metals: Microorganisms and metal absorption, factors affecting bioabsorption, bioreactors and bioabsorption, phytoremediation.

Bioleaching: Types of bioleaching, advantages and disadvantages of bioleaching, methods for bioleaching.

Biodiversity: Levels of biodiversity, value of biodiversity, global biodiversity, hotspots of biodiversity, threats to biodiversity, conservation of biodiversity.

Text books:
- Environmental Pollution Control Engineering by C. S. Rao. Wiley Eastern Limited
- Environmental Biotechnology: Basic concepts and applications by Indu Shekhar Thakur. 1. K. International Pvt. Ltd.

Reference books:
- Microbial Ecology: A conceptual approach by Lunch, M. Oxford Black N.S.D.
- Environmental Biotechnology by Geetha Bali. APH Publishing Corporation.
MBIO-204: NANOTECHNOLOGY
(Common with M. Tech. CACE)

Introduction: Introduction to nanotechnology, molecular and atomic size, surface and dimensional spaces.

Molecular nanotechnology: atoms by inference, electron microscopes, nanomanipulator, nanotweezers, atom manipulation, nanodots, nanolithography.

Nanopowders and nanomaterials: preparation, plasma arcing, chemical vapor deposition, sol-gels, electrodeposition, Ball milling, applications.

Carbon nanotubes: types, formation, assemblies, purification, properties and uses.

Molecular mimics: Catenanes and rotaxanes, various molecular switches, synthesis of rotaxanes and catenanes, molecular computers, chemical rotors, prodders, flippers, atom shuttles, actuators, contacts.

Nanobiometrics: Lipids as nano-bricks and mortar, self–assembled monolayers, proteins, 3-D structures arising from amines acids, nanoscale motors, Biological Computing, ion channels as sensors, Information in DNA structure, using DNA to build nano-cubes, hinges, smart glue, wire template.

Optics, photonics and solar energy: Properties of light and nanotechnology, Interaction of light and nanotechnology, Nanoholes and photons, Imaging, New low cost energy efficient windows and solar absorbers based on nanoparticles, Photonic crystals, surface wave guides and control of light paths.

Nanoelectrons: birth of electrons, semiconductors, transistor, integrated circuits, the tools of micro and nanofabrication, quantum electronic devices, quantum information and quantum computers, experimental implementations of quantum computers.

Future applications: microelectomechanical systems, nano-robots, ageless materials, invisible mending of atomic dislocations inside damaged materials, nanomechanics and nanoelectricity, nanoparticle coatings, nanoelectronic and magnetic devices and new computing systems, optoelectronic devices, environmental applications.

--

Molecular Dynamics, Simulation and Optimization of Nanosystems: Integration of Newton equation of motion, simulation of systems in contact with a heat bath, simulation methods based on accuracy and computational time, use of local and global optimization methods. (Scope: Chapters 5&6, Ali Mansoori*: Principles of Nanotechnology)

(This last section is not open for external assessment, but students are assessed internally by means of assignments and home work problems).

--

Text books:
Reference books:

MBIO-205: Elective-II

MBIO-205A: Industrial Biotech Products

I: Fundamentals involved in the production of industrial Microbial products such as details of the Fermentors, Synthetic and natural medium, processors, Sterilization methods, and inoculum preparation. A detailed study of 'Ethanol' production by fermentation, using black strap molasses, starchy substance and glucose like waste sulphate liquid purification methods of the fermented broth and production, of absolute ethyl alcohol.

II: Materials for fermentative production of Vinegar, Lactic Acid, Citric Acid, and Amino acids. The method involves selection of the particular strain of the micro-organism for Industrial Fermentation, process details and purification.

IV: Production of Antibiotics, Tetracyclines, Alkaloids Bakers yeast and Microbial Enzymes and Co-enzymes.

V: Fermentative materials for producing vitamins, Products from plant cell Cultures, Non-alcoholic beverages (Coco, Coffee, Tea fermentation).

Textbook:

References: